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An investigation is made of the possible time dependence of decay laws for unstable particles. The prob
ability P(t) that an unstable particle has not decayed at time t is expressed in terms of S-matrix quantities. 
It is concluded that, contrary to popular belief, the exponential decay law P=e~Tt is only one of a discrete 
set of possible decaylaws. 

INTRODUCTION 

IT is generally accepted that the intuitive notions of 
stable particles (or bound states) and unstable 

particles (or resonances in scattering reactions) make 
their appearance in S-matrix theory as singularities of 
5-matrix elements when the latter are regarded as 
functions of a complex energy variable.1 Thus, poles of 
the S matrix on the real energy axis correspond to 
stable particles, while those occurring near the real axis 
on so-called unphysical sheets are resonances, or if you 
prefer, unstable particles. These concepts, which are 
carried over into the relativistic regime, are based 
largely on experience gained in the laboratory of non-
relativistic quantum theory and direct examination of 
solutions of the time-dependent Schrodinger equation. 
There are in addition some rather convincing discus
sions based on approximations in quantum electro
dynamics2 and simple field-theoretical models.3 Finally, 
there are a number of papers which attempt to relate 
unstable particle decays to properties of propagators in 
quantum field theory.4 A very complete discussion of 
the general decay problem may be found in Chap. 8 of 
our book.5 

One might conclude from the above remarks that 
there is not much motivation for the present work. In 
spite of the fact that one understands quite well the 
connection between 5-matrix element singularities and 
resonant states on the one hand and the general features 
of the time decay of unstable states on the basis of the 
Schrodinger equation, on the other hand, the relation
ship between these two aspects of the same physical 
situation is less transparent than might be desired. One 
of the purposes of this paper is to clarify this, and in so 

1 See, for example, R. Blankenbecler, M. L. Goldberger, S. W. 
MacDowell, and S. B. Treiman, Phys. Rev. 123, 692 (1961). 

2 E . P. Wigner and V. F. Weisskopf, Z. Physik 63, 54 (1930). 
3 G. Kallen and V. Glaser, Nucl. Phys. 2, 706 (1956); M. Levy, 

Nuovo Cimento 13, 115 (1959); 14, 274 (1960). 
4 R. Peierls, Proceeding of the 1954 Glasgow Conference on Nuclear 

and Meson Physics (Pergamon Press, Inc., New York, 1955). A. 
Salam and P. T. Matthews, Phys. Rev. 112, 283 (1958). R. Jacob 
and R. G. Sachs, Phys. Rev. 121, 350 (1961). 

6 M. L. Goldberger and K. M. Watson, Collision Theory (John 
Wiley & Sons, Inc., New York, 1964). 
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doing we find a remarkably simple and physically 
satisfying connection between the two approaches. 
Another purpose is to continue our study of the role of 
familiar space-time concepts of quantum theory (and 
common sense) in what is generally called S-matrix 
theory where such concepts are rather obscure. (It is 
perhaps worth remarking that in approaching these 
questions we have neither the zeal of a true ^-matrix 
fanatic nor the rigidness of the axiomatic field theoreti
cian; we are completely dedicated to integration and 
will not hesitate to use any convenient technique at our 
disposal.) Finally, we address ourselves to the question 
of the exponential decay law. We are not concerned 
with the frequently discussed but essentially trivial and 
uninteresting fact that in reality, for very long times, 
one has to do with a power dependence on time. Rather, 
we are interested in exploring the kinds of decay laws 
that could be expected on the basis of either provable 
or possible singularities of ^-matrix elements. As we 
shall see, the conventional association of simple poles 
of the 5 matrix on unphysical sheets is not required by 
any known physical principle and the possibility of the 
consequent deviations from simple exponential decay 
laws is worth studying. 

Ordinarily one produces resonances or unstable 
particles in reactions and observes the subsequent 
decay products as a function of time measured more or 
less from the time of production. I t is, of course, 
meaningful and useful to speak of an unstable particle 
only if it lives for a time long compared to the produc
tion reaction time. For only then can one reasonably 
regard the production and decay as a two-step process, 
an obvious idealization in which the 5-matrix element 
factors into a product, to a very good approximation. 

Our interest in the question of the exponential decay 
law arose directly from discussions with Professor V. L. 
Fitch. He pointed out that the supporting evidence for 
such a law was far from convincing in unstable particle 
decays. Since we had already been led to considering 
^-matrix element singularities which naturally give a 
more complex time behavior, we were stimulated to 
explore this question in more detail. We would like to 
suggest that the time-honored study of decay curves 
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(rather than the simple determination of mean life
times) might be worthwhile. 

We describe in Sec. I I a simple and straightforward 
treatment of the decay of unstable states within the 
framework of conventional nonrelativistic quantum 
theory. The result of these considerations is such that 
a more general formulation is attempted in Sec. I l l 
which would seem to have validity in the relativistic 
regime. In Sec. IV a specific calculation is presented and 
the possibility of nonexponential decays is discussed in 
detail. A highly idealized experiment for the detection 
of unstable particle decays is described in Sec. V and a 
short summary given in Sec. VI. 

II. DECAY OF UNSTABLE STATES ACCORDING TO 
NONRELATIVISTIC QUANTUM MECHANICS 

The problem of the decay of a radioactive nucleus is 
an old one and its description is properly regarded as 
one of the important successes of quantum theory. One 
imagines that at time zero the unstable system is 
spatially confined and one asks for the probability that 
after a certain time the system will be found in the 
initial state. The simplicity of this physical situation is 
unfortunately frequently obscured by the detailed 
considerations of barrier penetration, introduction of 
complex eigenvalues, etc. We shall attempt to formulate 
the problem in such a simple way that the extension of 
the description to the relativistic regime of unstable 
particle production and decay is almost immediate. 

We imagine that we are dealing with a system which 
decays into two particles and work in the barycentric 
coordinate system of the decaying state. The wave 
function at £=0 is called ^ (0) and is taken to have a 
definite angular momentum /. I t is important for our 
purposes to think of ^ (0) as being localized in space 
within a distance characterized by a parameter 1//3. 
[For example, /5 might represent an exponential f allot! 
rate for ^ ( 0 ) ] . We shall later discuss in more detail the 
significance of the choice for /3; for the present it will be 
convenient to assume the restriction that 

l//3«wAJ, (2.1) 

where v is the velocity of the decay products and At is a 
measure of the "lifetime" of the state ̂ ( 0 ) . 

The meaning of the condition (2.1) is, of course, the 
requirement that the initial packet be small in spatial 
extent compared with the distance which the decay 
products can travel during the characteristic time At. 
Were this not the case a detailed study of the decay as 
a function of time would not appear possible. 

The wave function describing the relative motion of 
the decay products is ^K

+(r), where r is the relative 
coordinate and the superscript + carries the usual 
connotation of outgoing spherical waves, and K is the 
wave number related to the energy E and reduced mass 

m according to E=K2/2m (with h= 1). Quite specifically 

singer—%lir+8i) 
^ + ->(2/7r)W exp(«,) , (2.2) 

KT 

for large r; di is the phase shift corresponding to the 
scattering of the decay products. The factors are chosen 
to correspond to the continuum normalization 

1 
farfrC^+(r)]V«+W = - « ( t , - K ) . (2.3) 

We shall assume that the \pK
+ form a complete set so 

that the prepared decaying state may be expressed as 

Jo 
¥ ( 0 ) = / i?dKc(jc)\ltK

+(r), (2.4a) 

or 

H. c(*) = ( ^ + ¥ ( 0 ) ) = / i r f W ( i t ) ] * ¥ ( 0 ) . (2.4b) 

At any time / > 0 , the state ^f(t) is given by 

y (t) = e-iH** (0) = J KHKC(K)(TiEy,+ (r), (2.5) 
Jo 

where H is the complete Hamiltonian for the system. 
The quantity of interest is the probability amplitude 
A (t) for finding the system, at time t, in the state SF(0) 
given by 

4(0=(*(0),*(0) 
/•co 

J 0 

•2CIK\C(K) \2e (2.6) 

I t is clear that the C(K) must have some special 
properties which reflect the fact that ^ (0 ) corresponds 
to a more or less localized state [ that is, that ^ (0 ) is 
square integrable] and further that we are dealing with 
a long-lived system which has a reasonably well-
defined energy. The latter feature implies that C(K) will 
be particularly large in the neighborhood of some energy 
£ ~ E o . We must evidently exhibit explicitly this energy 
dependence of C(K) if we are to have any hope of de
scribing A(t) in a general way. Of course, from the 
standpoint of the preparation of >P(0) in a collision 
between the decay products one cannot entirely dis
entangle the confined character of ^>(0) from the 
relatively sharp energy Eo and the assumed long life
time of the state. We shall see below the connection 
between these aspects of the problem. Just to set the 
stage we remark that for a very narrow Breit-Wigner 
resonance one has5 

: / " 
A(t) = — I dE-

2TJ0 ( E - £ 0 ) 2 + r 2 / 4 

S e x p ( - i £ o O e x p ( - r / / 2 ) , (2.7) 

where T is the so-called width of the resonance. In this 



B1474 M. L . G O L D B E R G E R A N D K. M . W A T S O N 

example 

kWI*=-
1 

2mK ( £ - £ 0 ) 2 + r 2 / 4 
(2.8) 

Our problem is to isolate this typical resonance structure 
in a general way. 

The method we first describe leans heavily on well-
known properties of solutions of the Schrodinger equa
tion in nonrelativistic quantum mechanics.5,6 The 
form of the result suggests, however, that it has much 
greater generality and in Sec. I l l we present arguments 
in support of this contention. There is a very close and 
scarcely surprising connection between the theory of 
final state interaction described in Chap. 9 of Ref. 5, 
and the decay problem. 

We begin by remarking that \f/K
+ may be written as 

(in)1 <p(n,r) 
*, + (r)=(2/iry/» — - , (2.9) 

r J(-K) 

where <P(K,T) is a real solution (for real K) of the 
Schrodinger equation corresponding to angular momen
tum I and the boundary condition [see, for example, 
Eq. (6-259) of Ref. 5 ] 

lim (2Z+1) !!r-*-V(K,r)== 1, (2.10) 
r->0 

and /(—K) is the so-called Jost function. I t is in turn 
defined in terms of <p and a solution of the same 
Schrodinger equation satisfying the boundary condition 

]hneiKTf(K,r) = il, (2.11) 

according to 
f d<p(K,r) df(w) 

f(ic) = Kl\ f(K,r)—: <p(ic,r} 
dr dr 

(2.12) 

The function <p(ic,r) is an entire function of K2 and, of 
course, /(*c,r) is defined by the boundary condition 
(2.11) only in the half-plane lm/c<0. For real K, we can 
define another solution /(—K,r) according to 

/(-*/)=(-D7*M- (2.13) 
The function <P(K,T) may be expressed in terms of 
/ f a r ) a n d / ( - * / ) by 

1 
cp(K,r) = — — [ - / ( - * ) / ( * / ) 

HK1+1 

+ (-i)7M/(-*/)]-* 
2ul+1 

xl-f(-K)exp(-i\Kr-l-)) 

+ / W e x p ( i ( j c r - / ^ J , (2.14) 

6 An excellent review of this subject is given by R. Newton, 
J. Math. Phys. 1, 319 (1963). We shall follow the notation of this 
article reasonably closely and record below some of the principal 
results which we need. 

from which it follows by comparison with Eq. (2.2) 
that the S-matrix element Sz=exp(2i§j) is given by 

Si=/«//(- K). (2.15) 

The important feature of this expression for Si for 
our purpose is that the singularities of Si are associated 
with the vanishing of the denominator, / ( — K ) . Bound 
states make their appearance at points K—-\-iKnj KU>0 
such that f(—iKn) = 0; provided jf(i/cw)^0 this leads to 
a simple pole in the 5-matrix element. On the other 
hand, poles of Si in the lower half K plane, say at 
K=—Kr—iy, 7 > 0 , are evidently associated with zeros 
of / (K) in the upper half K plane, and it is not possible, 
in general, to say anything about the multiplicity of 
these.7 I t can be shown that / f a is an analytic function 
in the lower half K plane. Under certain circumstances 
this domain of analyticity may be extended to the upper 
half-plane [for example, for potentials which fall off 
like exp (—/*/), one has a strip of analyticity, ImK</j/2[]. 
In such a case we have /*(—«*) = / f a , so that if 
/(—Kr+iy) = 0, so is f(+Kr+iy). Similarly if there is a 
pole of Si at — KT—iy there is also one at +Kr— iy. The 
singularity structure of Si in the neighborhood of a pole 
then is 

(K—KT—iy) (K-\-Kr—iy) 
5 | « . (2.16) 

(K—Kr+iy) (n+Kr+iy) 

I t is conventional to consider the function /(—K) which 
is analytic in the upper half K plane as a function of the 
energy, E, called D(E), defined in the whole E plane cut 
along the positive real axis, the physical values being 
obtained as the limit on rj—»(0+) of D(E+iri). The 
following things are important8 : 

a r g Z ) ( £ + ^ H - 5 z ( £ ) , 

\imD(E+iv) = l, 
E—>oo 

D(E-iri) 
exp[2«8|(£)]= 

D(E+ir,) 
(2.17) 

/ EB\ \i r 
D(E)=U(l—- exp - / dE>— 

B \ EJ [TTJ0 E' 

HE') 

-E—irf) 

where the EB are bound-state energies. We shall assume 
hereafter that there are no bound states and as already 
instituted in the last of (2.17) interpret D(E) to be the 
limit as rj —> 0 of D(E+ir}). 

We may now express the expansion coefficients C(K) 
in terms of <p(K,r) and D(E). We write 

* 0 0 = ( f c + ¥ ( O ) ) 

= (2/*y»-
(-J*)l{l<p(K,r)yrM0)} 

D*(E) 
(2.18) 

7 We are indebted to Professor Bargmann and Professor Wigner 
for a discussion of this point. 

8 See, for example, Eq. (6-281) of ref. 5. 
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This is, of course, just what we are looking for. The 
zeros of •£>*[=/(*)] n e a r the real axis are just the 
resonances anticipated in Eq. (2.8) and this structure 
of D* will give the important long-time dependence of 
A(t) defined by Eq. (2.6). This is not an exact state
ment since as t —>oo? as is well known, A(t) shows a 
power dependence on t whereas we are interested in the 
essentially exponential regime (see Chap. 8 of Ref. 5 for 
a complete discussion). The numerator of C(K) will in 
general have singularities in the E or K plane far from 
the real axis. The reason is that <p(it,r) is an entire 
function of K2 SO that the only singularities of the 
numerator can arise from a failure of the integral over 
r, implied in the scalar product, to converge for complex 
K. Such singularities are related to the detailed falloff of 
the localized state SF(0). If the latter be expressed by 
exp(—fir) we expect in general a branch line extending 
from E— — oo to E— — fi2/2m (or in the K plane from 
K=i/3 to K=I<X>); hence the larger the p (and thus the 
greater the localization), the farther are these singu
larities from the physical region £ > 0 . I t is furthermore 
clear that (—iK)l(<p/r?&($)) must approach zero for 
large K sufficiently fast [since Z)(E)—»1] that the 
normalization condition 

On the basis of the above disscussion we write 

MO) -F 
Jo 

jftfc|cOOI2=i (2.19) 

can hold. 

where 
c(K)=(-iKy(g(E)/D*(E)), (2.20) 

g(£) = ( ^ M A , * ( 0 ) ) ( 2 / x ) ^ (2.21) 

is regarded as a function of E, since <p depends only on 
K2. We anticipate that g(E) is a slowly varying function 
of E in the neighborhood of the real E axis. I t is, of 
course, g(E) which contains the detailed information 
about \P(0) which would be required for an exact 
evaluation of A if). However, the factor [Z>*(E)] -1 is 
the thing which expresses the fact that ^ (0 ) is supposed 
to be nearly an eigenstate of H; that is, we are dealing 
with a long-lived resonance, one for which ^ (0 ) con
tains components with energies all in the neighborhood 
of some Eo. As long as we are in neither the very short 
nor very long time period for A it), we can expect that 
the most important effects are contained in D*iE) and 
that our predictions will be largely independent of 
^ (0) and hence of the production mechanism. 

I t is perhaps worthwhile to show the manner in which 
the recognition of the singular behavior of C(K) indeed 
allows for a description of the localized ^ (0 ) and, 
further, how if this feature is not recognized no such 
localization would be possible. Using our explicit 
expressions for C(K) and for the wave function \[/K+ in 
terms of Jost functions we have [writing Z)*(E) = / (« ) ] 

¥ ( 0 ) = ( 2 / i 
i—u)1 iu)1 

dK g(E) 

/•OO 

x ) 1 ' 2 / K 
J0 f(K) "' '2irKl+x 

r ) l /2 fee ,-

— KdKg(Ey\ -
ir Jo L. 

/ « 1 
-f(K,r)+(-l)LZ7-^f(-K,r)j 

/(-«) 

2ir JQ L /(«) 

*(2/T)I'» r , x JM 
KdKgiE)Kl 

( - 1 ) 
J(-*,r) 

/(-«) 0"J 

2r i_0 / ( r ) 
(2.22) 

In the last line we have used the fact that g(E) is an even function of K2. NOW we look at S1>(0) for large r, in the 
region where f(ic,r)—>il exp{ — ur}. Since /(«) by hypothesis has no zeros in the lower half-plane (these of necessity 
being bound states) and g{E) has no singularities until we reach K = —if! where 1//3 is associated with the "size" of 
^ ( 0 ) , we may lower the contour to this point and it is clear that ^ (0 ) will indeed go, as it should, like exp(—/3r). 

Now suppose we had been so naive to expect the expansion coefficients C(K) to be just any old smoothly varying 
function of K. Then 

*(0) = ( 2 / x ) ^ [ K2dKciK)—\-fiK,r)+ i- iy-^fi-Kyr)]-^ ( 2 / T T ) ^ — f 
Jo 2nr\- fi-K) J*-** 2rJ0 

X[--exp(--&(f--|fcr))+exp(2«i(ic))exp(fic(f-Jfcr))]. (2.23) 

If we are concerned with a sharp resonance, so that correspond to physically sensible, initial conditions. 
Si=exp{2idi} has the structure (2.16), a simple station- Since y^ivAt)"1, this choice for C(K) would violate our 
ary phase argument shows that ^(0)^exp(—%yr) fundamental condition (2.1). 
which is ordinarily much too "fat" a wave packet to We are now prepared to complete our discussion of 
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the amplitude A (f) for finding the initial state present 
at time t. We have 

/•oo p-iEt 

A(t)= H?dKKng2(E) 

h \D(E)\2 

r B(E) 
= / dE e-iEt, (2.24) 

h \D{E)\* 
where 

g2 (E)K
2l+2dK= B (E)dE. (2.25) 

The probability that at time t the unstable system has 
not decayed is 

p(0=M(0l2 (2-26) 
and the probability that the decay takes place during 
the interval dt is clearly 

p(t)dt=-(dP(t)/dt)dt. (2.27) 

Our expression for A(t) involving \D(E)\~2, Eq. 
(2.24) would seem to express the decay amplitude so 
far as possible in terms of S-matrix quantities. I t should 
be noted that whereas a knowledge of D(E) implies a 
knowledge of Si, the converse is not true, since Si 
involves only argZ)(E) = — 8i(E), and 

Si(E) = D*(E)/D(E). (2.28) 

In many ways, D{E) can be regarded as a "more 
fundamental" quantity than Si(E). I t enters quite 
naturally into a variety of problems such as the electro
magnetic structure of particles and in the theory of 
multichannel scattering processes, just to name two. 
One might even conjecture that the formulation of a 
D-matrix theory rather than an ^-matrix theory might 
be very worthwhile. This is not the purpose of the 
present paper so we shall not pursue the question fur
ther. [Another reason for not doing so is that we don't 
know precisely how to do it. Needless to say, D(E) is 
the same quantity that occurs in the so-called N/D 
method of solving partial wave dispersion relations.] 
We shall return in Sec. IV to the explicit evaluation of 
P(t) after we address ourselves to the general validity 
of our expression for the decay probability given by 
Eqs. (2.24) and (2.26). 

III. A MORE GENERAL FORMULATION OF 
THE DECAY PROBLEM 

Our treatment of the decay problem would appear 
superficially to depend rather heavily on detailed 
properties of solutions of the Schrodinger equation. In 
fact we feel that this is not at all the case and that the 
same conclusions can be drawn without explicitly 
mentioning things which might be unpalatable for a 
pure ^-matrix theorist. The point is simply that our 
principal problem was the isolation of the factor 
[/(/c)]_1= [_D*(E)~]~1 in the expression for the amplitude 
of the decaying state. The latter in turn necessarily is 
determined, since we are dealing with continuum states 

largely with the behavior of asymptotic wave functions 
which are quite legitimate targets of discussion for 
^-matrix theorists. That is, we argue that asymptotic 
wave functions must exist in any acceptable physical 
theory. 

We recall the well-known fact (see, for example, 
Sec. 5.2 of Ref. 5) that if one prepares a precollision 
packet of asymptotic states for a scattering process 
with certain wave-packet amplitudes C(K) then the 
interacting state vector at the time of interaction is a 
superposition with precisely the same amplitudes C(K) 
of the exact eigenfunctions. This implies that a study 
of the asymptotic wave functions suffices to determine 
the nature of the expansion coefficients. In our problem 
the desire to represent a spatially confined decaying 
system requires the presence in the asymptotic wave 
packet amplitude of a factor which will permit such a 
description. We cannot specify by this argument that 
we require exactly [/(/c)]_1 but this is a sufficient 
condition to insure the possibility of describing a local
ized state. We certainly cannot designate any other 
reasonable factor reflecting the presence of a resonance 
without disastrous effects on the asymptotic states. 

Another way to see the above described behavior is 
to consider the following simple example: Consider the 
scattering of two particles which can form a long-lived 
resonant state and then decay into the initial pair. We 
prepare a precollision packet which is so arranged that 
the colliding particles reach the origin of coordinates at 
a time we agree to call zero. The wave function at any 
positive time t after the collision is over is represented by 

* ( / ) = / dhf \ dh exp|>'^x-iE{K f)t]{b{v! '-K) 

-27r i5 [£ ( / c / ) -£ (^ )^K}a(K-K 0 ) , (3.1) 

where G(K—KO) describes the initial pre-collision 
packet, and TK>K is the T-matrix element describing the 
scattering. If we imagine a resonance in a particular 
angular momentum state, the important part of TK>K 

will contain a term {N/D)P%{Y! -K) and the resonant 
character of the reaction appears in the factor D. Thus 
the scattered wave function amplitude has the factor 
G(K—KO)[_D(E)]_1; a(K—Ko) knows nothing about the 
resonance, but D(E) of course does. The numerator 
function N(K) is also expected to be smooth in the 
resonance region. We see the natural occurrence of 
D(E) in the scattered wave function. 

The asymptotic wave packet states may be shown to 
be an essentially complete orthonormal set in a well-
defined sense (see Ref. 5, Chaps. 3 and 4). Thus the 
asymptotic form of a resonant state may surely be 
represented in the form originally suggested, Eq. 
(2.4a). The condition (2.1) instructs us to require that 
\I>(0) vanish in the asymptotic region for distances 
greater than /3_1. That this suggests very strongly the 
form (2.20) for C(K) may be seen on repeating the argu-
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merit given in connection with Eqs. (2.22) and (2.23), 
but using only the asymptotic form, for large r of these 
equations. 

IV. IMPLICATIONS OF A LONG-LIVED 
UNSTABLE STATE 

I t is apparent from our general expression (2.6) that 
any decay time can be achieved for any unstable 
physical system. The reason for this is that Eq. (2.6) 
involves only the wave packet expansion coefficients 
and does not contain any reference to the dynamical 
characteristics of the decaying system. In the previous 
two sections we have attempted to explain why many 
classes of unstable physical systems show similar 
characteristics. That is, for considerable variation of 
initial boundary conditions such systems exhibit re
markably uniform properties—so much so, in fact, that 
one tends to think of unstable "particles" as having 
unique properties.9 

The physical conditions required for such uniform 
properties seem to require (1) that the decaying system 
have a fairly sharply defined energy near, say, E 0 ; (2) 
that it have a long-lifetime At; and (3) that it be con
fined in space as required by the condition (2.1). 

In Chap. 8 of Ref. 5 we investigated the consequence 
of a long-lived state in a scattering experiment. For the 
case that both incident and final channels contain two 
particles, and when the lifetime At is large compared to 
the free flight time of the interacting particles across 
their region of mutual interaction, the eigenvalues of 
the S matrix were shown to have the unique form 

S(E) 
rE-Eo-iT/2j 

LE-E0+iT/2J ( 
,2iv(E) (4.1) 

Here r= 1, 2, • • • is a positive integer, and v(E) repre
sents the "background," or "potential," scattering (as 
it is sometimes called). The constant T in Eq. (4.1) is 
the level width, or more precisely, h/T is the Wigner 
lifetime5 of the interacting system. When At{~h/V) is 
very large (in the sense just described) we may treat 
v (E) as a constant and ignore it. 

The case r=l in Eq. (4.1) corresponds, of course, to 
a conventional Breit-Wigner resonance. I t was shown 
in Ref. 5, Chap. 8, that r^2 corresponds to a more 
general class of resonances. 

We return now to our discussion of the decay problem 
and ask what are the general characteristics of an 
unstable system having a long-lifetime At and initially 
confined in space as required by (2.1). We have just said 
that the condition of a long lifetime permits us to write 

rE-Eo-ir/2-y 
?,(E)d , 

LE-E0+iT/2J E-Eo+iT/2. 
(4.2) 

9 In a strict sense, for example, no two neutrons are quite the 
same, since the set of wave packet amplitudes C(K) describing the 
set of "neutron-like" systems is not countable and since (pre
sumably) the precise conditions of creation of a given "neutron" 
cannot be duplicated. 

where T is "small." This and the condition (2.1) 
permits us to treat B(E) as constant in Eq. (2.24). 

We shall restrict ourselves to the case in which there 
are no bound states having energies near E0, within a 
range large compared to T. Then we may write10 

Dr(E)--

1 r« dE' 
i = — / 

2iriJs FJ 

dE' lnSV(E') 

-E—irj 
(4.3) 

corresponding to a given integer r in Eq. (4.2). Evi
dently, we have 

£ , ( £ ) = [Z>i(£)] r , (4.4) 

where D\(E) corresponds to a conventional Breit-
Wigner resonance. 

Near the energy EQ we may write11 

D1(E)^N(E-E0+iT/2), (4.5) 

where N is a constant. From Eq. (4.4) we obtain the 
general result 

Dr(E) = Nr(E-Eo+iT/2y. (iX 

The decay characteristics of the system described 
may now be obtained from Eq. (2.24): 

Ar{t)-- •F dE-
Pr{E)e-im 

C(JE-£o)*+r»/4]' 
(4.7) 

where 

Pr(E)^B(E)/N\ 

Since B (E) is considered to be nearly constant over an 
interval comparable to T at E = E o , we may re-write 
this in the approximate form [here E i ^ E o — i T / 2 ] 

Ar(t)~pr(Eo) 
Jo 

**Pr(Eo)f 

dEe~Et 

o [ ( E - E i K E - E i * ) ] ' 

dEe~iEt 

[ ( E - E 1 ) ( E - E 1 * ) ] ^ 

2iripr(E0)r <^-1 "~iEt 

(r-1) 

2xpr(E0) 

o)r d**"1 e~iEt -| 

! LdE*-1 (E-Ei*)'-]*„*! 

( r - 1 ) ! 
exp(—iEQt) 

Xexp 
ny-ir - 1 -* (H-/-1)! 

E 
\ 2 / i 

(4.8) 
'o-i Tr+l (r-l)\l\ 

On choosing pr(Eo) to satisfy the condition (2.19) that 

10 See, for example, Eq. (6-283) of Ref. 5. The integral (4.3) can 
be made finite on introducing suitable subtractions. 

11 This is shown in the Appendix. 
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FIG. 1. Decay probability for various values of r} the order of the 

5-matrix pole describing the decaying state. * 

Ar(0) = l, we find 

Ar(t) = expi —iEot— 
Tt\r-l 

2/1-0 
-I-I 

( f + / - l ) I ( r - l ) l 
X - - . (4.9) 

( r - J - l ) « ! ( 2 r - 2 ) l 

Except for small corrections associated with the mode 
of formation of the state [ that is, with the detailed 
properties of B(E) in Eq. (2.24)], the decay laws 

Pr(t)=\Ar(t)\\ 

r= 1, 2, • • • are believed to represent the most general 
allowed-for long-lived systems which are initially 
localized in accordance with Eq. (2.1).12 

We list the decay amplitudes for r = 1, 2, • • •, 5 : 

(A1) = e~^, 

( ^ 3 ) = ^ r i / 2 { i + i n + r ¥ / i 2 ) } , 

f Tt TH2 THZ 

I 2 10 120 

Tt 3 (Tt)d 

(A6)=<rT«*\i+-+—(rt)H 
I 2 28 84 

(r/)4| 
1680) 

(4.10) 

In Fig. 1 we show \nPr(t) = ln\Ar(t)\
2 as a function 

of Tt. The obvious feature of these curves is that the 
larger the value of r is, the closer to unity Pr(t) tends to 
stay as time increases. We know of no examples showing 
other than the pure exponential behavior characteristic 
of r = l but a careful study of decay curves may be 
worthwhile. [As noted in the Introduction, there are 

12 An exception can occur, however, if two or more "resonances" 
happen to be separated by distances comparable to their respective 
widths. 

relatively few measurements of P(t) for the unstable 
particles.] 

There is a natural tendency to interpret a pole of the 
S matrix of order higher than the first as an accidental 
degeneracy; this implies, however, that the "primeval" 
poles are simple and we can find no deep theoretical 
basis for such an allegation. 

V. A COMMENT ON THE OBSERVATION 
OF DECAY LAWS 

For the simple exponential decay corresponding to 
r = l , [seeEqs. (4.10)] 

Pi(0 = ^ n , (5.1) 

the choice of / = 0 has no effect on the shape of the decay 
law. This is evidently not the case for r^ 2, although the 
exponential factor tends to dominate the time depend
ence of these for r c M (see Fig. 1). To compare these 
laws with experimental observations one must therefore 
discuss the initial conditions with some care. We shall 
now illustrate this with a somewhat idealized example. 

Referring to Fig. 2, we imagine that the instable 
particle is created within a sphere 5 in a bubble cham
ber. The size of this sphere is limited by the range of 
secondary electrons along the path of charged particles. 
We have seen that the actual size of S is not relevant as 
long as it is compatible with the condition (2.1), that is 
that the region be small compared to vAL Since we are 
studying the decay as a function of time, we assume 
that the time of creation (say 2=0) of the particle is 
known to within an interval small compared with 

We next suppose that the decaying particle passes 
through (and is registered by) counter C\ at time t\ and 
then is stopped in the block B. Here it decays and the 
decay product is counted in C2 at time h. Errors in 
registering the times h and /2 are again considered small 
compared with At=ft/T. 

The wave function in the interval 0<t<h then has 
the form (2.5) with c(k) given by Eq. (2.20). To take 
account of the information provided by d that an 
unstable particle passed through it at time th we intro-

BUB8LE CHAMBER 

UNSTABLE PARTICLE -e-

FIG. 2. Idealized experiment for measuring unstable particle 
decay. The interaction takes place in the sphere S, & is a counter; 
B is a block of stopping material where decay occurs; and C2 is a 
recording counter. 
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duce a projection operator13 

E(r) = 1 for r within counter 
= 0 for r outside counter. 

Then, immediately following the time th the wave 
function is14 

VM^NsEirMh), (5.2) 

where NE is the normalization constant. We may treat 
^'(0) as a new initial wave function and follow the 
argument leading to Eq. (2.5) to obtain, for t>th 

*'(*)= f K2dkc'(K)expl-iE(t-h)lf+(r), (5.3) 
Jo 

where 
C'M=(*+0-),*'(0)). (5.4) 

The probability amplitude for decay is then obtained 
for t>h using Eq. (2.6) with the C(K) replaced by C'(K). 
The arguments of Sees. II and III would lead us to 
expect that the result (4.9) would again be obtained 
with t replaced by (t— h), unless the size of counter d 
is such that the condition (2.1) is poorly satisfied. 

We repeat that the example just given is quite 
idealized and was presented only to emphasize that 
attention to initial and subsequent information may be 
important in studying particle decays. 

VI. CONCLUSIONS 

We have given a formulation of decay of unstable 
states which involves in its essentials only what might 
be termed S-matrix quantities. In fact a knowledge of 
the S matrix does not suffice in general since what enters 
is really the so-called denominator function D(E) which 
contains more information; it is, however, something 
which can be legitimately sought in a pure 5-matrix 
theory. It is obvious that a detailed description of a 
decay process requires a precise specification of the 
production mechanism. There does not appear in 
principle to be any difficulty in formulating the problem, 
although one can expect simplicity only under the 
circumstance that the overall S-matrix factors into a 
production part and a decay part. 

We have explored the possibility of finding decay 
laws more complicated than a simple exponential, 
resulting from resonance poles which are not of first 
order. There seem to be no very convincing arguments 
to say that there are in nature only first order poles. (If 
one were to find experimentally only pure exponential 
decays, we would be led to a postulate in S-matrix 

13 Strictly speaking, we require that the coordinates of both 
decay products lie within the counter. For simplicity of presenta
tion we are ignoring the center-of-mass coordinate of the unstable 
system. 

14 See, for example, M. L. Goldberger&nd K. M. Watson, Phys. 
Rev. 134, B919 (1964), where such sequential observations are 
discussed. 

theory which could be called the principle of minimal 
"policity.") It is clear that nonexponential decays 
might result if the production mechanism had some 
wild energy dependence. In general what one might 
expect however is something like what happens when 
the decay products of a radioactive decay are them
selves unstable. This gives a mixture of pure exponen
tials but nothing oscillatory or very spectacular. (See 
Ref. 5, Chap. 8 for a complete treatment.) If there did 
happen to be two nearby resonances in the decay 
channel one would find an oscillatory time dependence 
superimposed on the decaying exponentials. 

APPENDIX 

We describe here the evaluation of Eq. (4.3) for r= 1 
to obtain the expression (4.5). First, we consider a 
model for which D\(E) may be evaluated explicitly and 
then give a more general argument. 

For the model chosen we write the scattering phase 
shift as (here0<£<oo) 

8=—lnS^tan' 
2% 

/La(E)Ji\ 

\ E0-E / 
(Al) 

where a<<C(E0)
1/2. This corresponds to a v{E) in Eq. 

(4.1) which has the value v~ — TT/2 for £ « E 0 . Then 

£>i(£) = exp I-/ 
l X J 0 

' dE' tan-1{[>CE')]1/2/£o-.E/}-

E'-E-ir, 
(A2) 

The evaluation of Di(E) is most easily carried out 
noting that it must be analytic in the entire energy 
plane except along the real positive axis, must be real 
for E<0, must approach unity as E—» °o, and must 
have the prescribed phase. The function which has all 
of these virtues is 

D1(E) = {E-E,+i[_a(E)J»)/E. (A3) 

The approximate form (4.5) follows on setting 
r = 2[a(E0)]1/2, and restricting E to values close to EQ. 

To argue more generally, we substitute the expression 
(4.2) into (4.3), setting r = l . It is convenient to define 
the zero of energy so that EM=0 and to introduce a 

© 

- E S 3 " 

ir 
-Ecr-2 

! ® 

o°" Cl 

FIG. 3. Contours in the z plane for the 
evaluation of the integrals (A6). 
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cutoff M for the upper limit. Then we have 

A = ( l / 2 x ) [ / + - 7 _ ] , (A4) 
where 

I±= / dEf . (A5) 
Jo E'-E-irj 

The substitution 

z=E'-Eo±iT/2 

permits us to write 

r dz Inz 
J ± = / , (A6) 

Jc± z—a± 

L INTRODUCTION 

TH E data for the elastic scattering of K+ mesons on 
protons1'2 indicate that the interaction is domi-

nantly s wave and repulsive up to laboratory momenta 
of 800 MeV/c.3 This may be seen from the phenome-
nological, pure 5 wave, fits which accurately reproduce 
the data in this energy region.1'4 This paper is concerned 

* The major part of this work was performed while both of the 
authors were at the University of Illinois, and the work was sup
ported in part by the U. S. Office of Naval Research. 

f Present address: Department of Physics/ University. of 
Durham, Durham, England. 

*S. Goldhaber, W. Chinowsky, G. Goldhaber, W. Lee, T. 
O'Halloran, and T. F. Stubbs, Phys. Rev. Letters 9, 135 (1962). 

2 T . F. Stubbs, H. Bradner, W. Chinowsky, G. Goldhaber, S. 
Goldhaber, W. Slater, D. H. Stork, and H. K. Ticho, Phys. Rev. 
Letters 7, 188 (1961). 

3 For convenience these data are often referred to as the "low-
energy" K+-p data in this paper. 

4 D. G. Ravenhall, Phys. Rev. Letters 9, 504 (1962). 

where 
a±=E-EQ±iT/2. (A7) 

The contours C ± are illustrated in Fig. 3. 
As \E—Eo\ and T become very small the points a± 

approach the branch point. Only /+ becomes singular 
in this case. Its singularity may be exhibited by moving 
the contour up into the positive imaginary z plane and 
keeping the residue of the pole at a+. The leading 
(singular) term in I+ is 

I+~2wi lna+, 
or 

A^-\na+, (A8) 

from which Eq. (4.5) follows. 

with an analysis of the experimental data using dis
persion relation techniques. Previous analyses5'6 of the 
K-N interaction along these lines took explicit account 
of the / = 1 , 7 = 1 p-meson exchange force and assumed 
that this was the dominant long-range contribution. 
However, since the completion of these calculations of 
Ferrari et al.5 and Lee,6 the location of the p resonance 
has been found to be ^ 7 5 0 MeV, rather than the lower 
value of ^ 5 0 0 MeV that they used, and also the exist
ence of the co resonance has been established at roughly 
the same energy as the p. The KN exchange force arising 
from these resonances is thus harder to separate from 
other "short-range" forces, for example, those associ
ated with hyperon and hyperon-resonance exchange. 

5 F . Ferrari, G. Frye, and M. Pusterla, Phys. Rev. 123, 315 
(1961). 

6 B. W. Lee, thesis, University of Pennsylvania, 1960 (un
published) ; Phys. Rev. 121, 1550 (1961). 
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An analysis based on dispersion-relation techniques is applied to experimental data for K+-p elastic scat
tering. Particular reference is made to the "force of longest range" due to the exchange of low-mass pion pairs 
with isospin 1 = 0. The effect of this exchange force can be calculated in terms of only one unknown param
eter X which may essentially be chosen to be a linear combination of the K-T scattering lengths. The other 
forces of shorter range are described by further undetermined parameters. The K+-p differential cross section 
is calculated in terms of these parameters and a minimization procedure is used to obtain a fit to the experi
mental data. A good fit is obtained for a well-defined set of values of the parameters. In particular, X is well 
determined. A sum rule for Kir scattering is used to calculate a further relation between the K-ir scattering 
lengths so that the value of each of these is obtained. 


